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LETTER TO THE EDITOR 

Precise determination of the energy levels of the 
anharmonic oscillator from the quantization of the angle 
variable 

B Bacus, Y Meurice, and A Soemadi 
Department of Physics and Astronomy, University of Iowa. Iowa City, Iowa 52246. USA 

Received 5 June 1995 

Abstract. Using an ansatz motivated by the classical form of eim, where 4 is the angle variable. 
we consmct operators which satisfy the commutation relations of the creation-annihilation 
operators for the anhmoNc oscillator. The matrix dements of these operators can be expressed 
in iermr of enrim functions in the position complex plane. These functions provide solutions 
of the Ricatti equation associated with the time-independent ScWinger  equation. We relate 
the normaliwbility of the eigenstates to the global properties of the flows of this equation. 
These exact results yield approximations which complement the WKB approximation and allow 
an arbitrarily precise determination of the energy levels. We give numerical results for the first 
IO levels with 30 digits. We address the question of the quantum integrability Qf the system. 

In recent years, many interesting questions regarding the quantum behaviour of systems 
which classically exhibit sensitive dependence on the initial conditions have been raised [I]. 
Classically integrable systems with a perturbation 121 provide rich sequences of transitions 
to chaos when the parameter controlling the perturbation is increased. Recent studies [3] 
of the energy spectra of the quantum version of such systems have provided unexpected 
results. Ultimately, the questions raised in this context may become relevant for quantum 
field theory on a space lattice, i.e. a system of coupled anharmonic oscillators. It would be 
interesting to understand whether the tool which is used classically to control the effects 
of the perturbation, namely the analysis of small denominators, can also be used for the 
quantum problem. The prerequisite for such a discussion is to have at hand a quantum 
version of the action-angle variables for classically nonlinear problems. Due to the ordering 
problem this is a non-trivial issue. 

In this letter, we construct a quantum operator corresponding to the classical quantity 
e”, 4 being the angle variable, for one of the simplest nonlinear problems with one degree 
of freedom, namely the anharmonic oscillator with an energy operator 

We assume h > 0, but the sign of 00’ is not crucial for the calculations which follow. The 
method proposed can indeed be extended straightforwardly to the case where V is any even 
polynomial bounded from below. Classically, the angle variable @ satisfies the Poisson 
bracket relation (H, s@) = -iei40(H), where o is one over the derivative of the action 
with respect to the energy. A quantum version of this equation reads as 

[fi, A] =&AA(& (2) 
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where A is a function which remains to be specified. In order to construct an operator 
satisfying equation (2). we use an ansatz which, in the classical case, provides an explicit 
expression for eim in terms of p and x .  The form of the classical ansntz can bc obtained 
directly from the well known expression of the angle variable in terms of the position and 
the energy. In addition, we pick a special type of ordering, namely 

With this choice of ordering, a solution A multiplied on the right by an arbitrary function 
of H is another solution. In the classi& theory, this ambiguity is raised by imposing that 
ei* be on the unit circle. In the case of the potential given in equation (1). we obtain a 
formal solution of equation (2) provided that for n > 0 

If h is set to zero in equation (4) and A replaced by a numerical value E,  one recovers the 
difference equations for the corresponding classical equation mentioned above. Our starting 
equation .(2) can be compared with the operator equation [F(.?, @), fi] = ifz, a quantum 
version of { 4 / m ( H ) ,  H] = 1, solved by Bender 141 with a different type of ansatz (which 
requires negative powers of j or 2). 

We now study the matrix element (xlAIE) = (hKd/d.x + L)(x lE) ,  where L and K 
are short for C~oL.(E)xZnfl  and Cr+Kn(E)xZ”  respectively. In the following, the 
dependence of L, K and A on E is implicit and primes denote x derivatives. Equation (2) 
is satisfied for an arbitrary potential provided that 

fi L‘ 
2m m 
-K” + - + K A  = 0 

h 
-L” - 2K‘(E - V )  + K V‘ + L A  = 0. 
2m 

In the case of the potential given in equation (1). these-equations can be solved using the 
linear recursion relations given by equation (4) with H replaced by E. As a result, we 
get (xl2lE) as a function of E ,  A @ ) ,  KO and K]. If both KO and KI are zero, then 
(x lAlE)  = 0, consequently we require at least one of them to be non-zero. In order to fix 
the ambiguity mentioned above, we shall impose that the first non-zero K, to be 1. One 
can prove rigorously that 1K”K.I c CI (Cz)n(n!)-2/3 with C1 and Cz independent of n. This 
bound implies that L and K are entire functions of the position seen as a complex variable. 
This allows us to controllably approximate these functions in terms of their truncated power 
series. Note that in the classical case, the factorial suppression is absent and the functions L 
and K have a common finite radius of convergence which reflects the existence of turning 
points. 
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We a n  now in a position to construct formal solutions of the time-independent 
Scwdinger equation. First we notice that 

L2-h(L‘K - K ’ L ) - 2 m K Z ( V - E )  = K0(ii2K, +hmAKo+;?mKoE). (6) 

Recalling equation (4), the equality clearly holds-at x = 0. In addition, equation (5) implies 
that the derivative of the left-hand side is zero, consequently it holds for any x .  Adjusting 
the constants KO and K1 in such a way that the left-hand side of equation (6) is zero, and 
dividing by K 2  (temporarily assuming that K # 0). we obtain that L / K  satisfies the Ricatti 
equation 

E ( $ ) ‘ =  ($7 -2m(V - E) .  (7) 

A detailed study of equation (5) shows that equati0n.V) is also satisfied near a zero of K .  
Parametrizing the wavefunction as 

we find that equation (7) is the Ricatti form of the time independent Schrodinger equation. 
Note that equation (8) implies that AIE) = 0. We still need to specify the conditions 
under which the right-hand side of equation (6) is zero. After fixing the arbitrariness in 
the coefficients as discussed above, there remain two possibilities. The first one is KO = 1 
and K I  = -2mK0/h~(~ArZ + E )  which corresponds to an even eigenfunction (x lE) .  The 
second possibility is KO = 0 and K I  = 1, which corresponds to an odd eigenfunction, 
and for which L J K  has automatically the -A/* singularity at the origin. In both cases, 
equation (4)  defines uniquely L(x)  and K ( x )  given E and A. From the uniqueness of the 
solution of the Ricatti equation, given a condition at x = 0 (LJK = 0 in the even case and 
K J L  = 0 in the odd case), L J K  is indeed,A-independent as one can check order by order 
in the expansion of L / K  near x = 0. A particularly convenient choice is A = 0, because 
in this case equations (5) and (8) imply that l(xlE)I2 a IK(x)l .  We shall now use the 
formal soIution of the Schrodinger equation to find sh& upper and lower bounds on the 
energy levels. 

Our basic tool to find accurate upper bounds on the energy levels will be the theorem 
proven in 151 that for a Sturm-Liouville problem the nth eigenfunction divides the 
fundamental domain into n parts by means of its nodal points. For the problem discussed 
here, the zeros of (x lE)  are the poles of L / K  which is seen most easily by picking 11 = 0. 
Consequently, if K has more than n zeros at finite x (which are not zsros of L) ,  then 
E =- E.. Furthermore, if E is decreased continuously, the largest zero of K increases 
continuously. When E reaches E., a pair of zeros disappeais at infinity. One can then 
monitor the ‘entrance’ of the zeros in the region x < a while E increases, by finding E 
such that K(a ,  E )  = 0. Thii can be done using Newton’s method with an appropriate 
truncation in the expansion of K .  One canthen check whether the existence of the zero 
can be established despite the errors due to the truncation (which can be estimated b using 
the bound mentioned above). 

Lower bouncIs can be found from the requirement that the wavefunction (x lE)  is 
normalizable. Due to the fact that ( x l E )  has a definite parity, we will restrict the 
discussion to the positive x part of the (x ,  L J K )  plane. This half plane can be divided 
into a region where L / K  increases and a region where L / K  decreases. The boundary 
between these two regions is characterized by (LJK)’ = 0 which by equation (7) implies 
( L I K )  = +,/2m(V - E).’ For this reason we call this curve the ‘WKB curve’. For the 
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potential of equation (I), one finds that if a trajectory crosses the WKB curve L / K  continues 
to decrease when x increases. In other words, the WKB curve is the boundary of a sink Using 
bounds on (LIK)' coming from equation (7) we can prove that, whenever the trajectory 
crosses the WKB curve, (x lE)  defined by equation (8) is not normalizable. Consequently, 
if ( x l E )  has n nodes and if the corresponding L/K  ultimately decreases (when x becomes 
large enough), then E c E,. Note that equation (7) shows that the poles of L / K  can 
only be simple and have a residue 4. This implies that the Dunham condition [7] used 
in semiclassical calculations [SI is automatically satisfied. This also implies that for the 
potential of equation (I), a normalizable wavefunction cannot have a zero in the classically 
forbidden region (because L / K  could never reach the positive part of the WKB curve for x 
larger than the location of the pole). 

L efter to the Editor 

Table 1. The first ten energy levels E. and the number of (numerically) signilicant digils of the 
upper bound on E. (sn) in the m e  I = 1/10. m = 1/2 and 00 =2. 

n E. sn 

0 1.065285509543717688857091 62879 95 
I 3.30687201315291350712812168469 93 
2 5.14795926883356330473350311848 89 
3 8.35267782578575471215525773464 87 
4 11.098S95622633043OlIO864S87493 84 
5 13.969 926 1977427993W973433 956 8 81 
6 16.9547946861441513376926165088 79 
7 2O.L)43863604188461233641421 1074 77 
8 23.229552 1799392890706470874343 74 
9 26.505 554 752 536 617417469 SO3 0067 72 

In summary, when E is sufficiently close to E, and x sufficiently large, L / K  follows 
closely the trajectory of the positive part of the WKB curve. When a certain value of x is 
reached L / K  depends sensitively on small changes in E. A small increase in E creates an 
additional zero of the wavefunction, a small decrease forces L / K  to cross the positive part 
of the WKB curve and to reach the negative part of it. This allows us to find sharp bounds 
on the energy levels. The only problem which remains is the control of the round-off errors. 
For a usual double precision computation, this is a serio& issue, however since the linear 
recursion formula of equation (4) requires a number of operations which only grows linearly 
with the maximal order calculated, we can use 'slow' computational methods involving a 
very high precision. This can be implemented, for instance with MATWMATIICA, using the 
instruction 'SetF'recision[. . . , 1001' for'numbers set with a precision of 100 digits. This 
method has allowed us to obtain the wavefunction with very good precision, at large x, far 
beyond the classical turning point, i.e. where the lowest-order WKB approximation works 
well. 

Proceeding this way, we have calculated the first 10 energy levels in the case m = l/2, 
= 2 and A = 1/10, The results are displayed in table 1 with 30 significant'digits. 

These numbers have been obtained by keeping 400 terms in the expansion of L and K 
and restricting the calculation to the interval 1x1 < 7.5 The starting precision was 100 
digits. The difference between the upper and the lower bounds were required to be less 
than lo@*. These calculations have been performed independently using MATHEMATICA 
and MAPLE. Our numerical results are in agreement with the existing literature summarized 
in [6] and where numbers up to 15 significant digits can be found. Note that the numerical 
precision on the lower bounds obtained with Newton's methods (which can estimated from 
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the MAWMATICA command ‘Precision[. . .]’) decreases approximately linearly when the 
level increases as shown in the last column of table I. It is clear that these round-off errors 
are much smaller than the theoretical precision achieved. More generally, a preliminary 
analysis indicates that the enterprise of calculating a very large number of levels with a 
very large precision does not face prohibitive (i.e. exponential) growth of computer time. 
If this is effectively the case, we could say that the quantum anharmonic oscillator is 
‘numerically integrable’. 

A more satisfactory outcome would be to find an operator which would be the analogue 
of the classical action which satisfies the Poisson bracket relation ( I ( H ) , e @ )  = -is+. 
At the quantum level the corresponding relation implies an equally spaced spectrum. 
Equivalently, if we had an analytical expression for A(E) corresponding to A being the 
minimal creation operator (where E is replaced by E, and f iA(E) by E,+, - E, in the 
matrix elements), we could calculate the energy spectrum recursively. In both cases, it 
would mean that we would have at hand an implicit closed form expression for the energy 
spechum. Despite interesting attempts [8], such an expression has not been found and 
discovering it is a challenge for the future. 

It is a pleasure to thank T Allen, A Bhattacharjee, C Bender, W Klink, Y Nambu, W Polyzou, 
G Payne, V Rodgers, J Schweitzer, D Speiser and I Weyers for valuable conversations and 
comments. 
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